



# TLR Signaling Inhibition with Mosedipimod / EC-18

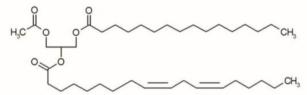
Michael Charlton MD, FRCP University of Chicago

#### Contents

- I. Introduction and IP Status of EC-18 (PLAG)
- II. NASH Background
- III. Proposed Mechanism of Action of EC-18
- IV. EC-18's effects in the murine models of NASH

(1) STAM<sup>™</sup> Mouse Model

(2) High-Fat High-Fructose (HFHF) Diet-fed Mouse Model

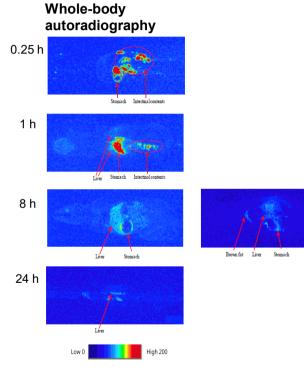

VI. Conclusion & Timeline

### **Introduction of EC-18**

#### An oral, lipid-based, first-in-class small molecule

#### PLAG (1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol)

- Fully synthetic PLAG, originated from Sika deer antlers
- Orally-available, lipid-based small molecule administered daily as soft gel capsules
- 1 capsule: 500 mg of PLAG (99.5% high purity level)
  + 1 mg antioxidant (α-tocopherol)
- No drug-related safety issues observed in Phase I and on-going Phase II clinical studies (CRIOM, CIN)








# Safety, ADME, PK and Phase 1/2 Study of EC-18

#### **Distribution of EC-18**



#### Plasma stability

| Test compound                                | Final test conc. | % of remaining drug after 1 h incubation<br>(N=3) |            |
|----------------------------------------------|------------------|---------------------------------------------------|------------|
|                                              | (µM)             | Human plasma                                      | Rat plasma |
| EC-18                                        | 1                | >99                                               | >99        |
| Albendazol<br>(high plasma stability marker) | 1                | >99                                               | >99        |
| Vinpocetin<br>(low plasma stability marker)  | 1                | 85.3 ± 3.8                                        | 52.4 ± 7.2 |

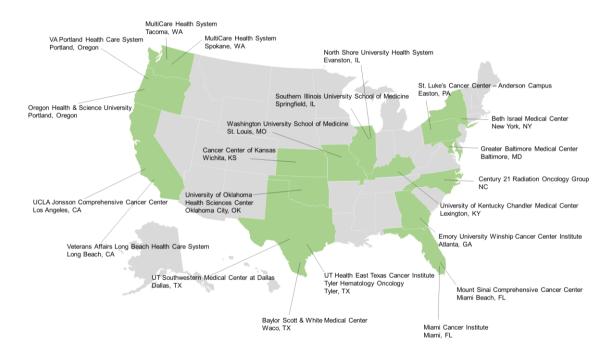
#### Plasma protein binding

| Test compound                 | Final test<br>conc.<br>(µM) | % of plasma protein binding (N=3) |          |  |
|-------------------------------|-----------------------------|-----------------------------------|----------|--|
|                               |                             | Humans                            | Rats     |  |
| EC-18                         | 1                           | >99                               | 98.8±0.5 |  |
| Warfarin<br>(high PPB marker) | 1                           | 99.2±0.2                          | 99.1±0.3 |  |
| Atenolol<br>(low PPB marker)  | 1                           | 1.7±1.2                           | 9.2±2.1  |  |

Whole-body autoradiograms in albino rats at 0.25, 1, 8, and 24 h after oral administration of [<sup>14</sup>C]EC-18 at single dose of 200 mg/kg (N=2)

# **Summary of Phase 1 Studies**

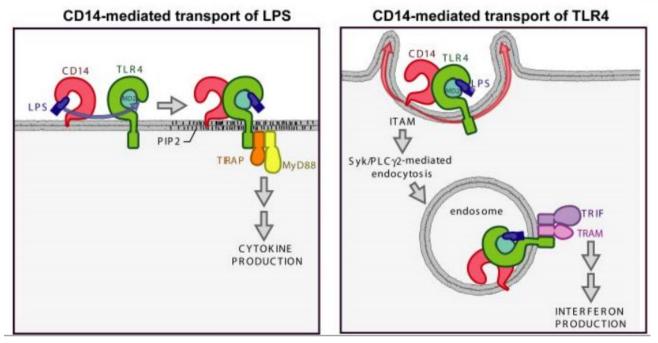
| ltem             | EC18-001                                                          | EC18-102                                                             | EC-18-001                                       |  |
|------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|--|
| Study            | SAD, MAD and PK (QD)                                              | SAD, Food effect and PK (QD)                                         | SAD and PK (QD)                                 |  |
| Country          | Republic of Korea                                                 | Republic of Korea                                                    | United States of America                        |  |
| Registratio<br>n | KCT0001470/NCT02532712                                            | KCT0001845/NCT02700360                                               | NCT02496143                                     |  |
| Study<br>Period  | 25 Feb 2015 ~ 28 Dec 2015                                         | 24 Jul 2015 ~ 11 Oct 2015                                            | 15 July 2015 ~ 10 Dec 2015                      |  |
| Subjects         | 32 + 32 = total 64 healthy volunteers                             | 6 per sequence = total 36 healthy<br>volunteers                      | 8/9 per cohort = total 33 healthy<br>volunteers |  |
| Dosing           | EC-18 500, 1000, 2000, 4000 mg +<br>Placebo                       | EC-18 500, 1000, 2000 mg + Placebo                                   | EC-18 500, 1000, 2000, 4000 mg +<br>Placebo     |  |
| Safety<br>issue  | No SAE and SADR occurred                                          | No SAE and SADR occurred                                             | No SAE and SADR occurred                        |  |
| Conclusion       | The administration of EC-18 up to 4,000 mg was safe and tolerable | An oral absorption of EC-18 was enhanced by administration with meal | •                                               |  |


## Phase 2 Study Program (CRIOM)

#### Stage 1

- 25 sites
- 24 subjects
- 4 groups @ 500mg, 1000mg, 2000mg, placebo

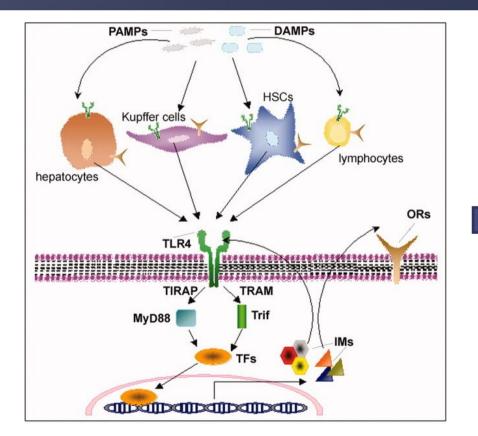
#### Stage 2


- 25 sites
- 80 subjects
- 2 groups @ 2000mg, placebo





# **Mechanism of Action**

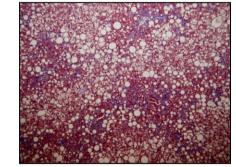

## **CD14 initiated PRR Endocytic Trafficking**



CD14 initiates a cascade of trafficking events. This cascade begins with CD14 transporting LPS to TLR4, and culminates with CD14 delivering TLR4 to the endosomal signaling machinery. The endocytosis of the TLR4-MD2 complex requires CD14.

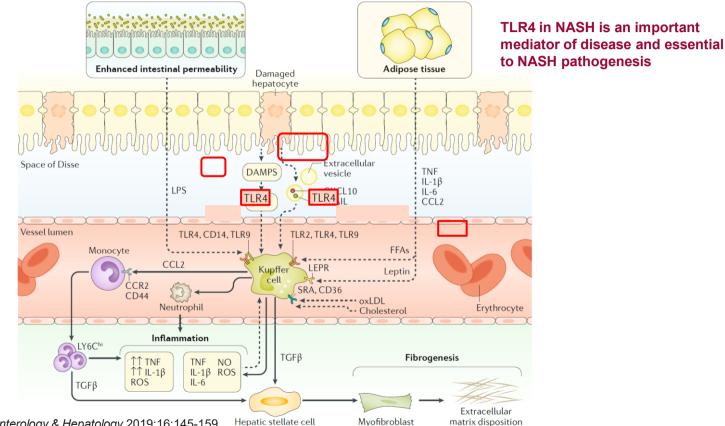
Bio Protoc. 2018: 08 (14); e2928.

# **TLR Signaling in NASH**



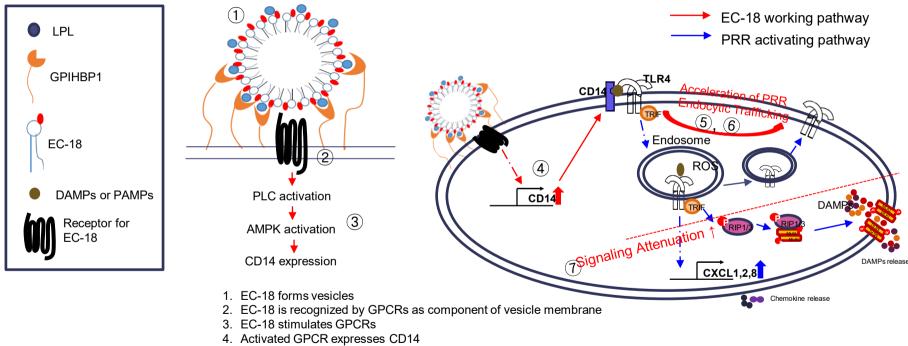



#### Editorial


Pathogen- or damage-associated molecular patterns during nonalcoholic fatty liver disease development<sup>1+</sup>

Anna Alisi Ph.D. 🗙, Rita Carsetti M.D., Valerio Nobili M.D.

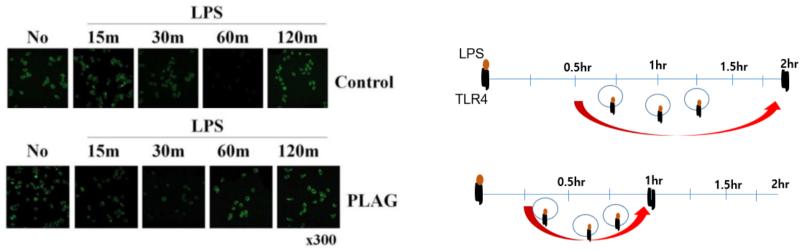



# PAMP/DAMP and TLR4 signaling in liver-resident cells during NAFLD development

#### **TLRs in the Pathogenesis of NASH**

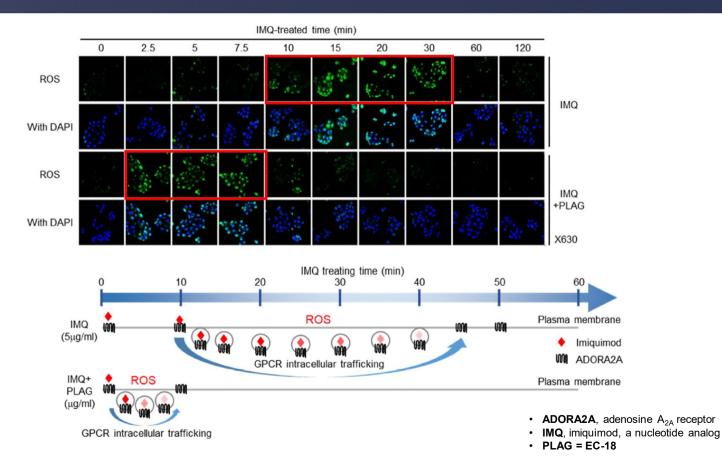


Nature Reviews Gastroenterology & Hepatology 2019;16;145-159

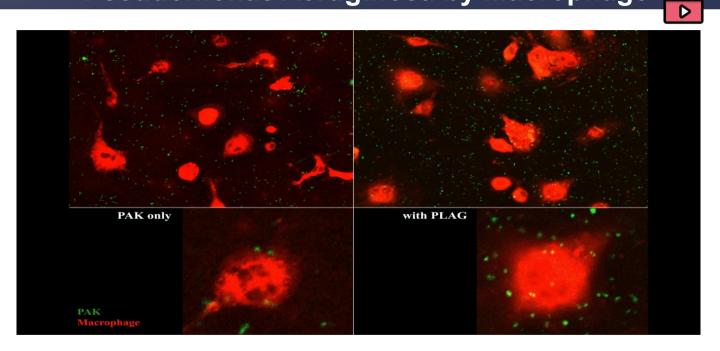

#### **Therapeutic Target: Acceleration of PRR Endocytic Trafficking**



- 5. CD14 accelerates TLR4 internalization and membrane return
- 6. Endosome dependent signaling is shortened by EC-18
- 7. Chemokine expression is down regulated


## Early Internalization & Recycling Back to the Plasma Membrane of TLR4 by PLAG

TLR4/MD2

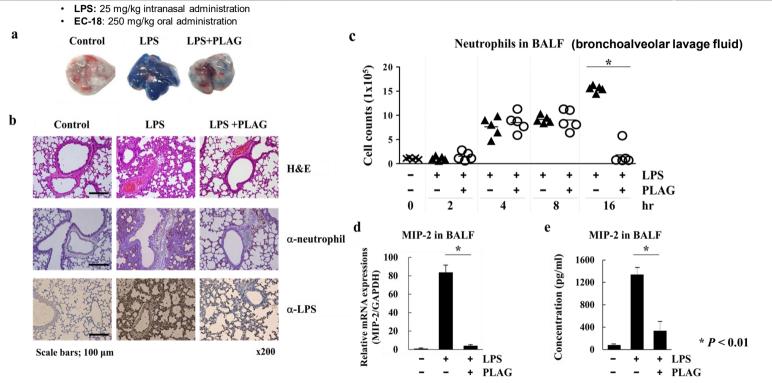



PLAG induces an earlier internalization of TLR4 in murine macrophage cells treated with LPS. PLAG also induces a more rapid return of the TLR4 to the plasma membrane than the control group Raw 264.7 cells: murine macrophage Frontiers in Immunology 2019;10..article 2177

#### EC-18 Accelerates & Shortens the Process Time Interval of ROS Production



# EC-18 (PLAG) Enhances Phagocytosis of Pseudomonas Aeruginosa by Macrophage




Pseudomonas aeruginosa is an LPS-expressing Gram (-) bacteria, triggering TLR-4 induced phagocytic & inflammatory responses.

PAK: *Pseudomonas aeruginosa* strain k THP-1 (human macrophage)

#### PLAG Resolves LPS-induced Acute Lung Injury (ALI) through Regulation of Neutrophil Infiltration


doi.org/10.3389/fimmu.2019.02177



PLAG/LPS co-treated animals exhibited the earlier return to baseline levels in the neutrophil number of BALF after 16 hr. The secreted level or mRNA of MIP-2 was also significantly increased in BALF following LPS administration, and markedly decreased in PLAG co-treated mice.

#### Oral Administration of EC-18 Improves Survival in a Murine Model of Abdominal Sepsis

Efficacy of EC-18 in CLP (cecal ligation & puncture)-induced sepsis mouse model



EC-18 improves survival in murine sepsis model via down-regulation of pro-inflammatory cytokines production contributing to earlier return to immune homeostasis

#### **MOA of EC-18**

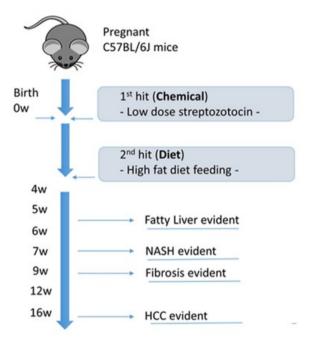
- 1. <u>Molecular Target</u>: a GPCR (G protein-Coupled Receptor)
- 2. <u>Proof of Concept</u>: Rapid removal of DAMPs/PAMPs contributing to faster resolution of inflammation
- **3.** <u>**Primary Action Mechanism</u>**: Acceleration of intracellular trafficking by TLR4 (internalization, movement to endosome and recycling back to the cell surface) of PRR</u>
- **4.** <u>Secondary Action Mechanism</u>: Acceleration of resolution through stopping further neutrophil recruitment resulting in termination of necroptosis signaling and enhancing the efferocytosis of macrophage



# Mosedipimod / EC-18 / PLAG in Animal Models of NAFLD/NASH

# In vivo Study

#### 1. STAM<sup>™</sup> Mouse Model


- Steatosis/Steatohepatitis/Fibrosis
- Low-dose STZ (Streptozotocin)/HFD (high-fat diet)-induced NASH & insulin resistance mouse model
- Non-genetic C57BL/6 mice

#### 2. High-Fat High-Fructose (HFHF) Diet-fed Mouse Model

- Steatosis/Steatohepatitis
- Obesity and Type 2 diabetes-induced NASH
- ICR (Institute of Cancer Research) mice

\*STAM<sup>™</sup> and HFHF-fed mouse models may replicate key features of NASH in humans.

# NASH Mice Model (STAM<sup>™</sup>, SMC Lab, Tokyo)



- Diabetes mellitus was achieved by the i.p. administration of low-dose (200 µg) streptozotocin (STZ) shortly after birth, which results in a chemical inflammation of the pancreatic islets.
- Following neonatal STZ administration, a 60% high-fat-diet feeding starts from 4 weeks to 9 weeks of age. Daily oral EC-18 was started at 6 weeks and continued until 9 weeks till the mice were sacrificed.

### **Test Compounds**

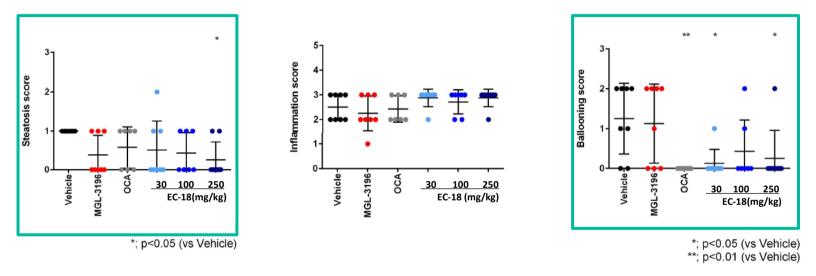
#### EC-18 (PLAG) groups (n=8 per group)

• 30, 100, and 250\* mg/kg per day (three doses)

#### OCA\*\* (obeticholic acid) group (n=8)

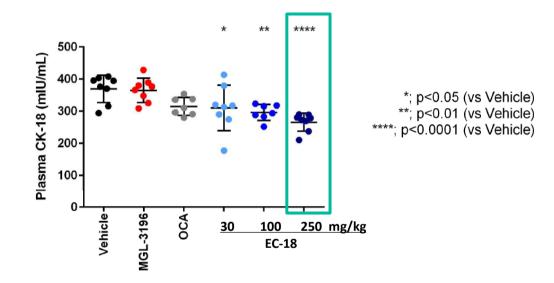
- 30 mg/kg per day
- Farnesoid X Receptor (FXR) agonist

#### MGL-3196\*\* group (n=8)


- 3 mg/kg per day
- Thyroid hormone receptor (THR)  $\beta$ -selective agonist
- \*: Considering the body surface area, the human [80 kg] equivalent dose is 1,600 mg per day. EC-18 dose used in phase 2 clinical trial of chemoradiation-induced oral mucositis currently ongoing in the US is 2,000 mg per day.
- \*\*: Drug candidate for NASH in phase 3 stage of the clinical trial

## **Individual Scores of NAS**

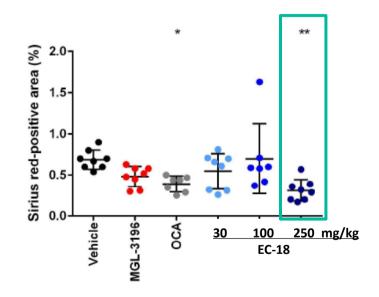
**A** Steatosis score


**B** Inflammation score

#### C Ballooning score



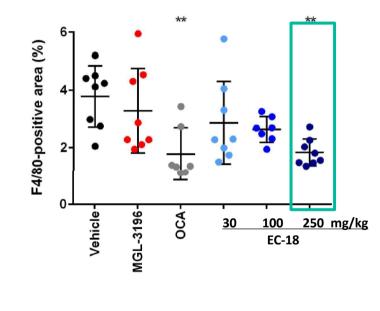
EC-18 treatment improved steatosis & hepatic ballooning leading to overall reduction in NAS score.


#### **Comparison of CK-18 Fragments in Plasma**



CK-18: Plasma caspase-generated cytokeratin-18 fragments

Plasma CK-18 level has a high specificity for NASH & fibrosis and is used as a noninvasive biomarker for monitoring disease progression and response to therapy. CK-18 levels are a marker of hepatocyte apoptosis. Only EC-18 significantly reduced plasma CK-18 compared to vehicle, in a dose-dependent manner.


#### **Hepatic Fibrosis**



EC-18 significantly decreased CSA

\*; p<0.05 (vs Vehicle) \*\*; p<0.01 (vs Vehicle)

#### Hepatic Macrophage Infiltration Assessed by F4/80-positive Area



\*\*; p<0.01 (vs Vehicle)

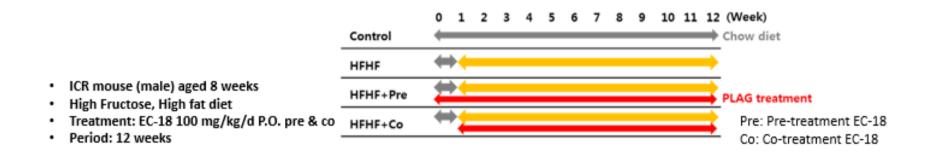
F4/80 (macrophage marker): F4/80 is used to identify hepatic macrophages in liver sections.

## **STAM<sup>™</sup> Study Results**

#### In Vivo Efficacy Study of EC-18 in STAM Model of Non-alcoholic Steatohepatitis

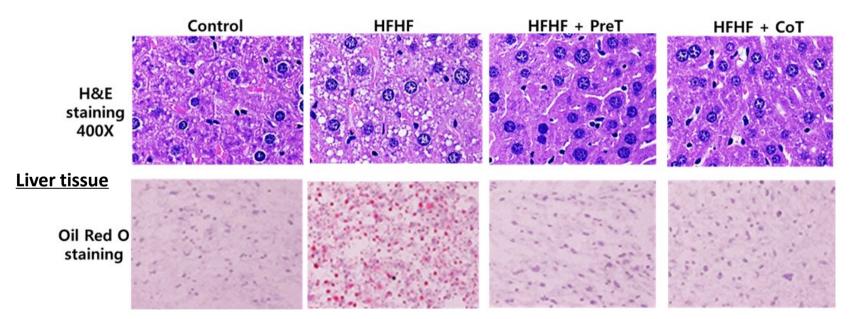
STAM<sup>™</sup> model, Tokyo, Japan

S


|                                              | Vehicle<br>(n=8) | MGL-3196 (3mpk)<br>(n=8) | OCA (30mpk)<br>(n=7) | EC-18 (250mpk)<br>(n=8) |
|----------------------------------------------|------------------|--------------------------|----------------------|-------------------------|
| NAS score                                    | $4.8\pm0.7$      | 3.8 ± 1.4                | 3.0 ± 0.8**          | 3.4 ± 1.2*              |
| Plasma CK-18 <sup>\$</sup>                   | $369.5 \pm 42.3$ | 365.0 ± 37.8             | 314.8 ± 27.9         | 265.8 ± 27.9****        |
| Inflammation area<br>F4/80                   | 3.8 ± 1.1        | 3.3 ± 1.5**              | $1.8 \pm 0.9$        | 1.8 ± 0.5**             |
| Fibrosis area<br>(Sirius red<br>staining, %) | 0.69 ± 0.12      | $0.48\pm0.12$            | 0.39 ± 0.10*         | 0.31 ± 0.13**           |

C57BL/6, male mice

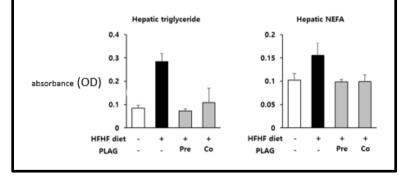
\*; *p* < 0.05 (vs Vehicle), \*\*; *p* < 0.01 (vs Vehicle), \*\*\*\*; *p* < 0.0001 (vs Vehicle)


<sup>\$</sup> Normal range: 220~260 mIU/mL

### High-Fat High-Fructose (HFHF) Diet-fed Mice Model



HFHF diet: Fat 45%, carbohydrate 35%, protein 20% Chow diet: 7% simple sugars, 3% Fat, 50% polysaccharide, 15% protein

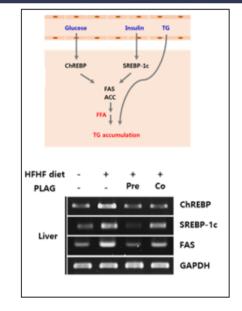

#### **EC-18 Ameliorates Hepatic Steatosis**



Lipid droplets (red dots) visualized by *Oil Red O staining Oil Red O staining* determines intuitive *hepatic* steatotic phenotypes

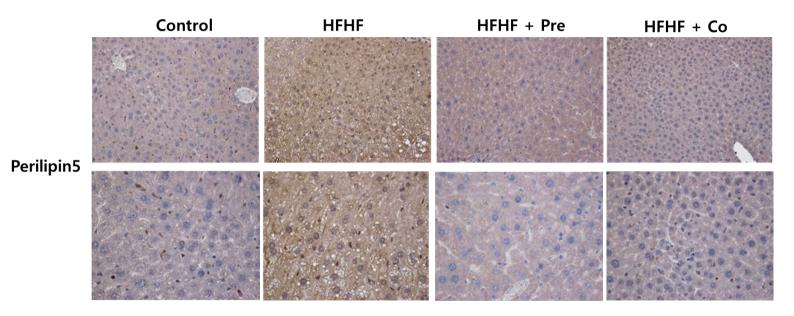
## Effects of EC-18 on De Novo Lipogenesis in Liver

NEFA (FFAs) have been considered to be responsible for lipotoxicity in NASH. NEFA are elevated in liver of mice in HFHF model of NASH. **EC-18 reduces hepatic NEFA and TG**.




NEFA: Non-esterified fatty acid (FFA)

ChREBP: Carbohydrate-responsive element-binding protein SREBP-1c: Sterol regulatory element-binding protein 1c

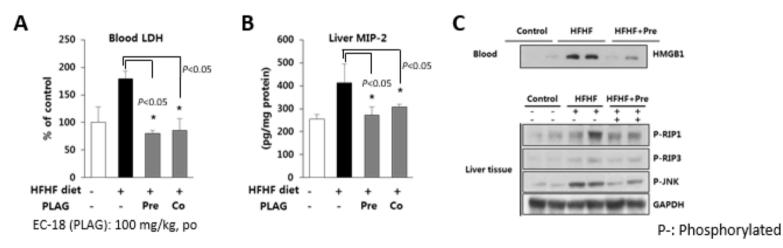

FAS: Fatty acid synthase

ACC: Acetyl-CoA carboxylase



SREBP-1c & ChREBP are transcriptional factors involved in de novo lipogenesis (DNL) in the liver. Long-chain saturated fatty acids (e.g. palmitic acid), which are the products of DNL, are cytotoxic to hepatocytes.

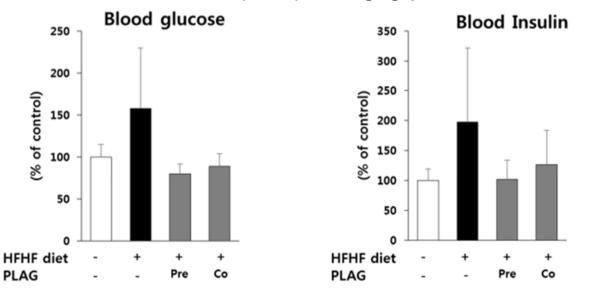
#### EC-18 Prevents Steatosis via Downregulating Perilipin 5




The IHC staining of perlipin5 is correlated with lipid accumulation in mouse liver

Perilipin5: Lipid-droplet binding protein which promotes hepatic steatosis

# EC-18 Attenuates Necroptosis Signals & CXCL2 (MIP-2) Chemokine


Necroptotic cell death characterized by breakdown of cell membrane causes the release of intracellular contents, such as HMGB1 & LDH into extracellular space.

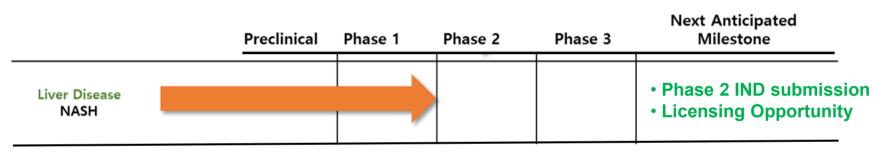


#### EC-18 reduces inflammatory signals through modulation of necroptosis

- RIPK: Receptor interacting protein kinase
- LDH: Lactate dehydrogenase : Measuring LDH release is a useful method for detecting necroptosis because the permeabilization of plasma membrane is a key signature of necrotic cell
- MIP-2: Macrophage inflammation protein 2
- JNK: c-Jun N-terminal kinase,
- HMGB1: High Mobility Group Box 1

#### **EC-18 Improves Insulin Sensitivity**




EC-18 (PLAG): 100 mg/kg, po

In the HFHF diet-fed mice model, EC-18 also lowered insulin levels as well as lowering blood glucose levels, suggesting that EC-18 reduced insulin resistance in insulin target tissues.

#### Conclusion

- EC-18 may improve NASH and hepatic fibrosis via accelerating intracellular trafficking of TLR4 expressed in liver, adipose tissue, muscle, intestinal epithelial cells and circulating immune cells.
- This accelerated TLR4 endocytic trafficking contributes to swift removal of DAMPs/PAMPs leading to early termination of necroptosis signaling and avoiding recruitment of neutrophils for extended periods of time, resulting in faster resolution of inflammation without severe host damage and earlier return to homeostasis.
- IP protection, *in vitro* and *in vivo* data of EC-18 are very strong along with excellent safety and tolerability safety profile from Phase 1 clinical trials.
- EC-18 could be a promising therapeutic to resolve NASH, prevent progression to liver fibrosis, and reverse liver fibrosis as well.

#### NASH Pipeline Development



2020 1Q